Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure.
نویسندگان
چکیده
We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel beta-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-l-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-l-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel beta-sheet. In the proteins with antiparallel beta-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic "Z"-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.
منابع مشابه
Signatures of beta-sheet secondary structures in linear and two-dimensional infrared spectroscopy.
Using idealized models for parallel and antiparallel beta sheets, we calculate the linear and two-dimensional infrared spectra of the amide I vibration as a function of size and secondary structure. The model assumes transition-dipole coupling between the amide I oscillators in the sheet and accounts for the anharmonic nature of these oscillators. Using analytical and numerical methods, we show...
متن کاملDetermination of the secondary structure and folding topology of an RNA binding domain of mammalian hnRNP A1 protein using three-dimensional heteronuclear magnetic resonance spectroscopy.
The secondary structure and folding topology of the first RNA binding domain of the human hnRNP A1 protein was determined by multidimensional heteronuclear NMR spectroscopy. The 92 amino acid long domain exhibits a beta alpha beta beta alpha beta folding pattern, arranged in a four-stranded antiparallel beta-sheet flanked by two alpha-helices, which is very similar to that found for other membe...
متن کاملSequential resonance assignment and secondary structure determination of the Ascaris trypsin inhibitor, a member of a novel class of proteinase inhibitors.
The solution conformation of the Ascaris trypsin inhibitor, a member of a novel class of proteinase inhibitors, has been investigated by nuclear magnetic resonance spectroscopy. Complete sequence-specific assignments of the 1H NMR spectrum have been obtained by using a number of two-dimensional techniques for identifying through-bond and through-space (less than 5-A) connectivities. Elements of...
متن کاملPressure- and temperature-induced unfolding and aggregation of recombinant human interferon-gamma: a Fourier transform infrared spectroscopy study.
The effect of hydrostatic pressure on the secondary structure of recombinant human interferon-gamma (rhIFN-gamma) and its biologically inactive truncated form rhIFN-Delta C15 has been studied using Fourier-transform IR (FTIR) spectroscopy. In situ observation of the pressure-induced changes using the diamond anvil cell shows that the alpha-helical structure is mainly transformed into disordered...
متن کاملNMR determination of the secondary structure and the three-dimensional polypeptide backbone fold of the human sterol carrier protein 2.
Nuclear magnetic resonance (NMR) spectroscopy was used to determine the secondary structure and the three-dimensional polypeptide backbone fold of the human sterol carrier protein 2 (hSCP2), which is a basic protein with 123 residues believed to participate in the intracellular transport of cholesterol and various other lipids. Sequence-specific assignments were obtained for nearly all backbone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 25 شماره
صفحات -
تاریخ انتشار 2004